Source code for gluoncv.model_zoo.losses

"""Custom losses for object detection.
Losses are used to penalize incorrect classification and inaccurate box regression.
Losses are subclasses of gluon.loss.Loss which is a HybridBlock actually.
"""
from __future__ import absolute_import
import mxnet
from mxnet.gluon.loss import _apply_weighting

# pylint: disable=arguments-differ

[docs]class FocalLoss(mxnet.gluon.loss.Loss): """Focal Loss for inbalanced classification. Focal loss was described in https://arxiv.org/abs/1708.02002 Parameters ---------- axis : int, default -1 The axis to sum over when computing softmax and entropy. alpha : float, default 0.25 The alpha which controls loss curve. gamma : float, default 2 The gamma which controls loss curve. sparse_label : bool, default True Whether label is an integer array instead of probability distribution. from_logits : bool, default False Whether input is a log probability (usually from log_softmax) instead. batch_axis : int, default 0 The axis that represents mini-batch. weight : float or None Global scalar weight for loss. num_class : int Number of classification categories. It is required is `sparse_label` is `True`. eps : float Eps to avoid numerical issue. size_average : bool, default True If `True`, will take mean of the output loss on every axis except `batch_axis`. Inputs: - **pred**: the prediction tensor, where the `batch_axis` dimension ranges over batch size and `axis` dimension ranges over the number of classes. - **label**: the truth tensor. When `sparse_label` is True, `label`'s shape should be `pred`'s shape with the `axis` dimension removed. i.e. for `pred` with shape (1,2,3,4) and `axis = 2`, `label`'s shape should be (1,2,4) and values should be integers between 0 and 2. If `sparse_label` is False, `label`'s shape must be the same as `pred` and values should be floats in the range `[0, 1]`. - **sample_weight**: element-wise weighting tensor. Must be broadcastable to the same shape as label. For example, if label has shape (64, 10) and you want to weigh each sample in the batch separately, sample_weight should have shape (64, 1). Outputs: - **loss**: loss tensor with shape (batch_size,). Dimenions other than batch_axis are averaged out. """ def __init__(self, axis=-1, alpha=0.25, gamma=2, sparse_label=True, from_logits=False, batch_axis=0, weight=None, num_class=None, eps=1e-12, size_average=True, **kwargs): super(FocalLoss, self).__init__(weight, batch_axis, **kwargs) self._axis = axis self._alpha = alpha self._gamma = gamma self._sparse_label = sparse_label if sparse_label and (not isinstance(num_class, int) or (num_class < 1)): raise ValueError("Number of class > 0 must be provided if sparse label is used.") self._num_class = num_class self._from_logits = from_logits self._eps = eps self._size_average = size_average
[docs] def hybrid_forward(self, F, pred, label, sample_weight=None): """Loss forward""" if not self._from_logits: pred = F.sigmoid(pred) if self._sparse_label: one_hot = F.one_hot(label, self._num_class) else: one_hot = label > 0 pt = F.where(one_hot, pred, 1 - pred) t = F.ones_like(one_hot) alpha = F.where(one_hot, self._alpha * t, (1 - self._alpha) * t) loss = -alpha * ((1 - pt) ** self._gamma) * F.log(F.minimum(pt + self._eps, 1)) loss = _apply_weighting(F, loss, self._weight, sample_weight) if self._size_average: return F.mean(loss, axis=self._batch_axis, exclude=True) else: return F.sum(loss, axis=self._batch_axis, exclude=True)